

CHARITABLE COACHING CENTRE
CHARITABLE COACHING CENTRE
Class XII
Sample Paper-6

Time allowed: 3 hours

Maximum marks: 80

General Instructions

1. This question paper contains – five sections A, B, C, D and E. Each section is compulsory. However, there are internal choices in some questions.
2. Section A has 18 MCQ's and 02 Assertion-Reason based questions of 1 mark each.
3. Section B has 5 Very Short Answer (VSA) type questions of 2 marks each.
4. Section C has 6 Short Answer (SA) type questions of 3 marks each.
5. Section D has 4 Long Answer (LA) type questions of 5 marks each.
6. Section E has 3 source based/case/passage based/integrated units of assessment (4 marks each) with sub-parts.

Section A

(Multiple Choice Questions) Each question carries 1 mark

Questions 1. If a line makes angles 90° , 135° and 45° with the positive directions of X, Y and Z-axes, then its direction cosines are

(a) $\langle 0, \sqrt{2}, \frac{1}{\sqrt{2}} \rangle$ (b) $\langle -\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}} \rangle$
 (c) $\langle 0, -\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$ (d) $\langle \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}, 0 \rangle$

Solution: (c) Let the direction cosines of the line be l, m, and n, then
 $l = \cos 90^\circ = 0$, $m = \cos 135^\circ = -1/\sqrt{2}$
 and $n = \cos 45^\circ = 1/\sqrt{2}$

Hence, the direction cosines of the line are

$$\langle 0, -1/\sqrt{2}, 1/\sqrt{2} \rangle$$

Questions 2. The projection of the vector $\mathbf{i} - \mathbf{j}$ on the vector $\mathbf{i} + \mathbf{j}$ is

(a) 1
 (b) 0
 (c) 2
 (d) 5

Solution:

(b) Let $\vec{a} = \hat{i} - \hat{j}$ and $\vec{b} = \hat{i} + \hat{j}$

We know that projection of \vec{a} on \vec{b} is $\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$

$$= \frac{(\hat{i} - \hat{j}) \cdot (\hat{i} + \hat{j})}{|\hat{i} + \hat{j}|} = \frac{1 - 1}{\sqrt{2}} = 0$$

Question 3. If a matrix has 8 elements, then which of the following will not be a possible order of the matrix?

(a) 1×8
 (b) 2×4
 (c) 4×2
 (d) 4×4

Solution: (d) We know that if a matrix of order $m \times n$, then it has mn elements. Thus, to find all the possible order of a matrix with 8 elements, we will find all the ordered pairs of natural numbers, whose product is 8. Thus, all possible ordered pairs are $(1, 8)$, $(8, 1)$, $(2, 4)$, $(4, 2)$.

Question 4. The probability distribution of a random variable x is given as under

$$P(X=x) = \begin{cases} kx^2 & , x=1, 2, 3 \\ 2kx & , x=4, 5, 6 \\ 0 & , \text{otherwise} \end{cases}$$

where, k is constant. Then, k equals

(a) $\frac{1}{2}$ (b) $\frac{1}{44}$
 (c) $\frac{3}{44}$ (d) $\frac{1}{3}$

Solution: (b) The probability distribution is

x	1	2	3	4	5	6	otherwise
$P(X)$	k	$4k$	$9k$	$8k$	$10k$	$12k$	0

We know that $\sum P_i = 1$

$$\therefore k + 4k + 9k + 8k + 10k + 12k = 1$$

$$\Rightarrow 44k = 1$$

$$\Rightarrow k = 144$$

Question 5.

For what value of k , the matrix $\begin{bmatrix} 2-k & 4 \\ -5 & 1 \end{bmatrix}$ is

not invertible?

Solution: (c) The given matrix is not invertible, if

$$\begin{vmatrix} 2-k & 4 \\ -5 & 1 \end{vmatrix} = 0$$

$$\Rightarrow 2-k+20=0$$

$$\Rightarrow k=22$$

Question 6. A vector in the direction of a vector $\vec{a} = \vec{i} - \vec{j} + \vec{k}$, which has magnitude 8 units is

$$(a) \frac{8}{\sqrt{3}}\vec{i} + \frac{8}{\sqrt{3}}\vec{j} + \frac{8}{\sqrt{3}}\vec{k} \quad (b) \frac{8}{\sqrt{3}}\vec{i} - \frac{8}{\sqrt{3}}\vec{j} + \frac{8}{\sqrt{3}}\vec{k}$$

$$(c) \frac{3}{\sqrt{5}}\vec{i} + \frac{3}{\sqrt{5}}\vec{j} + \frac{3}{\sqrt{5}}\vec{k} \quad (d) \frac{\vec{i}}{\sqrt{2}} + \frac{\vec{j}}{\sqrt{2}} + \frac{\vec{k}}{\sqrt{2}}$$

Solution:

$$(b) \text{ Given, } \vec{a} = \vec{i} - \vec{j} + \vec{k}$$

Now, unit vector in the direction of \vec{a} is

$$\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\vec{i} - \vec{j} + \vec{k}}{\sqrt{(\vec{i})^2 + (-\vec{j})^2 + (\vec{k})^2}} = \frac{\vec{i} - \vec{j} + \vec{k}}{\sqrt{3}}$$

\therefore Vector of magnitude 8 units in direction of \vec{a}

$$= \frac{8(\vec{i} - \vec{j} + \vec{k})}{\sqrt{3}} = \frac{8}{\sqrt{3}}\vec{i} - \frac{8}{\sqrt{3}}\vec{j} + \frac{8}{\sqrt{3}}\vec{k}$$

Question 7.

If $A = \begin{bmatrix} 2 & 3 \\ -4 & -6 \end{bmatrix}$, then which of the

following is true?

$$(a) A(\text{adj } A) \neq |A|I$$

$$(b) A(\text{adj } A) \neq (\text{adj } A)A$$

$$(c) A(\text{adj } A) = (\text{adj } A)A = |A|I = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

(d) None of the above

Solution: (c) We know that, if A is any square matrix of order n , then $A(\text{adj } A) = (\text{adj } A)A = |A|I$.

Question 8. If the area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq units, then the value of k is

$$(a) \pm 4$$

$$(b) \pm 2$$

$$(c) \pm 3$$

$$(d) \pm 1$$

Solution: (c) Given area of a triangle with vertices $(-3, 0)$, $(3, 0)$ and $(0, k)$ is 9 sq units.

$$\text{We have, } \frac{1}{2} \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix} = \pm 9 \Rightarrow \frac{1}{2} \begin{vmatrix} -3 & 0 & 1 \\ 3 & 0 & 1 \\ 0 & k & 1 \end{vmatrix} = \pm 18$$

$$\Rightarrow -3(0-k) - 0 + 1(3k-0) = \pm 18$$

$$\Rightarrow 3k + 3k = \pm 18$$

$$\Rightarrow 6k = \pm 18$$

$$\Rightarrow k = \pm 3$$

Question 9. If two events A and B are mutually exclusive, then $P(A/B)$ equals

$$(a) 0$$

$$(b) 1$$

$$(c) 0.5$$

$$(d) 0.25$$

Solution: (a) We know that if A and B are mutually exclusive, then $P(A \cap B) = 0$.

$$\therefore P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} = 0 \quad [\because P(A \cap B) = 0]$$

Question 10. The direction cosines of a line are k, k, k , then

$$(a) k > 0$$

$$(b) 0 < k < 1$$

$$(c) k = 1$$

$$(d) k = \pm 1/\sqrt{3}$$

Solution: (d) We have, $l = m = n = k$

We know that $l^2 + m^2 + n^2 = 1$

$$\Rightarrow k^2 + k^2 + k^2 = 1 \Rightarrow 3k^2 = 1$$

$$\Rightarrow k^2 = 1/3$$

$$\Rightarrow k = \pm 1/\sqrt{3}$$

Question 11. The order and degree of the differential equation $d^2y/dx^2 + (dy/dx)^{1/4} + x^{1/5} = 0$ respectively, are

- (a) 2 and 4
- (b) 2 and 2
- (c) 2 and 3
- (d) 3 and 3

Solution:

(a) Given that, $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} + x^{1/5} = 0$

$$\Rightarrow \frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/4} = -x^{1/5}$$

$$\Rightarrow \left(\frac{dy}{dx}\right)^{1/4} = -\left(x^{1/5} + \frac{d^2y}{dx^2}\right)$$

On squaring both sides, we get

$$\left(\frac{dy}{dx}\right)^{1/2} = \left(x^{1/5} + \frac{d^2y}{dx^2}\right)^2$$

Again, on squaring both sides, we have

$$\frac{dy}{dx} = \left(x^{1/5} + \frac{d^2y}{dx^2}\right)^4$$

order = 2, degree = 4

Question 12. The direction ratios of the line $x+2/2=2y-5/-3, z=2$ are

- (a) 1, 1, 5
- (b) 2, 1, 3
- (c) 4, 3, 0
- (d) 4, -3, 0

Solution: (d) Given, equation of line can be written as

$$\frac{x+2}{2} = \frac{2y-5}{-3} = \frac{z-2}{0}$$

$$\Rightarrow \frac{x+2}{2} = \frac{y-5/2}{-3/2} = \frac{z-2}{0}$$

\therefore DR's of line are $2, -\frac{3}{2}, 0$ or $4, -3, 0$.

Question 13. Which of the following is not a homogeneous function of x and y ?

- (a) $x^2 + 2xy$
- (b) $2x - y$
- (c) $\cos^2(y/x) + y/x$
- (d) $\sin x - \cos y$

Solution: (d) Since, $\sin x - \cos y$ can't be expressed in the form $x^n(y/x)$ or $y^n h(x/y)$, therefore, it is not a homogeneous function.

Question 14. The derivative of $x^3/\cos x$ is, when $x = 0$

- (a) $x^3/\sin x$
- (b) 1
- (c) 0
- (d) $x^2/\cos 2x$

Solution:

(c) Given, $\frac{x^3}{\cos x}$

Let $y = \frac{x^3}{\cos x}$

On differentiating w.r.t. x, we get

$$\frac{dy}{dx} = \frac{\cos x \frac{d}{dx}(x^3) - x^3 \frac{d}{dx}(\cos x)}{(\cos x)^2}$$

$$\Rightarrow \frac{dy}{dx} = \frac{3x^2 \cos x + x^3 \sin x}{(\cos x)^2}$$

When $x = 0$, then $\frac{dy}{dx} \Big|_{x=0} = 0$

Question 15. If $y = x(x - 3)^2$ decreases for the values of x given by

- (a) $1 < x < 3$
- (b) $x < 0$
- (c) $x > 0$
- (d) $0 < x < 3/2$

Solution: (a) We have, $y = x(x - 3)^2$

$$\begin{aligned} \therefore dxdy &= x \cdot 2(x - 3) \cdot 1 + (x - 3)^2 \cdot 1 \\ &= 2x^2 - 6x + x^2 + 9 - 6x = 3x^2 - 12x + 9 \\ &= 3(x^2 - x + 3) = 3(x - 3)(x - 1) \end{aligned}$$

So, $y = x(x - 3)^2$ decreases from (1, 3).

[since, $y' < 0$ for all $x \in (1, 3)$, hence y is decreasing on (1, 3)]

Question 16. If a die is thrown and a card is selected at random from a deck of 52 playing cards, then the probability of getting an even number on the die and a spade card equals

- (a) $1/4$
- (b) $1/2$
- (c) $1/8$
- (d) $1/3$

Solution: (c) Let the event A and B are getting an even number on die and getting spade card, respectively.

$$\therefore P(A) = \frac{3}{6} = \frac{1}{2} \text{ and } P(B) = \frac{13}{52} = \frac{1}{4}$$

Now, both are independent events.

$$\therefore P(A \cap B) = P(A) \times P(B) = \frac{1}{2} \times \frac{1}{4} = \frac{1}{8}$$

Question 17.

Value of x , if $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$, is

- (a) $\pm \sqrt{3}$
- (b) 2
- (c) ± 3
- (d) $\pm \sqrt{2}$

Solution:

$$\begin{aligned} \text{(a) Given, } & \begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} \\ \Rightarrow & 2 \times 1 - 5 \times 4 = 2x \times x - 6 \times 4 \\ \Rightarrow & 2 - 20 = 2x^2 - 24 \Rightarrow -18 = 2x^2 - 24 \\ \Rightarrow & 2x^2 = 6 \Rightarrow x^2 = 3 \\ \therefore & x = \pm \sqrt{3} \quad [\text{taking square root}] \end{aligned}$$

Question 18. The interval in which $y = x^2 e^{-x}$ is increasing, is

- (a) $(-\infty, \infty)$
- (b) $(-2, 0)$
- (c) $(2, \infty)$
- (d) $(0, 2)$

Solution: (d) Given, $y = x^2 e^{-x}$

On differentiating w.r.t. x , we get

$$dy/dx = x^2 e^{-x} (-1) + e^{-x} (2x)$$

$$= x e^{-x}(-x + 2) = x e^{-x} (2 - x)$$

For increasing function, $dy/dx > 0$

$$\Rightarrow x e^{-x} (2 - x) > 0$$

Case I

$$\Rightarrow x > 0 \text{ and } 2 - x > 0$$

$$\Rightarrow x > 0 \text{ and } x < 2$$

$$\Rightarrow 0 < x < 2$$

Case II

$$\Rightarrow x < 0 \text{ and } 2 - x < 0$$

$$\Rightarrow x < 0 \text{ and } x > 2$$

Hence, there is no value of x exist.

Clearly, it is increasing in $(0, 2)$.

Assertion-Reason Based Questions

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A
- (b) Both A and R are true but R is not the correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true

Question 19. Assertion (A) Let $A = \{2, 4, 6\}$ and $B = \{3, 5, 7, 9\}$ and defined a function $f = \{(2, 3), (4, 5), (6, 7)\}$ from A to B. Then, f is not onto.

Reason (R) A function $f: A \rightarrow B$ is said to be onto, if every element of B is the image of some elements of A under f.

Solution: (b) Assertion Given that,

$$A = \{2, 4, 6\},$$

$$B = \{3, 5, 7, 9\}$$

$$\text{and } R = \{(2, 3), (4, 5), (6, 7)\}$$

Here, $f(2) = 3$, $f(4) = 5$ and $f(6) = 7$

It can be seen that the images of distinct elements of A under f are distinct.

Hence, function f is one-one but f is not onto, as 9 e 8 does not have a pre-image in A.

Hence, both Assertion and Reason are true, but Reason is not the correct explanation of Assertion.

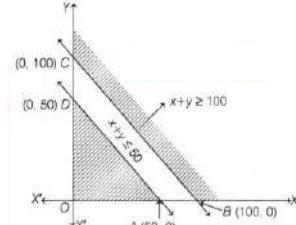
Question 20. Assertion (A) Consider the linear programming problem.

Maximize $Z = 4x + y$, subject to constraints are $x + y \leq 50$, $x + y \geq 100$, and $x, y \geq 0$. Then, maximum value of Z is 50.

Reason (R) If the shaded region is not bounded, then maximum value cannot be determined.

Solution: (d) Assertion Given, maximize $Z = 4x + y$

and $x + y < 50$, $x + y > 100$; $x, y \geq 0$



Hence, it is clear from the graph that it is not bounded region. So, maximum value cannot be determined.

Hence, Assertion is false but Reason is true.

Section B

(This section comprises of very short answer type questions (VSA) of 2 marks each)

Question 21. Show that the area of a parallelogram having diagonals $3\hat{i} + \hat{j} - 2\hat{k}$ and $\hat{i} - 3\hat{j} + 4\hat{k}$ is $5\sqrt{3}$ sq units.

Solution:

Let $\vec{a} = 3\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} - 3\hat{j} + 4\hat{k}$. Then,

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 1 & -3 & 4 \end{vmatrix} = (4-6)\hat{i} - (12+2)\hat{j} + (-9-1)\hat{k} \\ = -2\hat{i} - 14\hat{j} - 10\hat{k}$$

$$\Rightarrow |\vec{a} \times \vec{b}| = \sqrt{(-2)^2 + (-14)^2 + (-10)^2} = \sqrt{300}$$

$$\therefore \text{Area of the parallelogram} = \frac{1}{2} |\vec{a} \times \vec{b}| = \frac{1}{2} \times \sqrt{300} \\ = 5\sqrt{3} \text{ sq units}$$

Question 22. If two vectors \vec{a} and \vec{b} are such that $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$, then find $|\vec{a} - \vec{b}|$.

Solution:

Given, $|\vec{a}| = 2$, $|\vec{b}| = 3$ and $\vec{a} \cdot \vec{b} = 4$

$$|\vec{a} - \vec{b}|^2 = (\vec{a} - \vec{b}) \cdot (\vec{a} - \vec{b})$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} - \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b}$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = \vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{b} - \vec{a} \cdot \vec{b} - \vec{a} \cdot \vec{b}$$

$$[\because \vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}]$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 - 2(\vec{a} \cdot \vec{b})$$

$$\Rightarrow |\vec{a} - \vec{b}|^2 = 4 + 9 - 2(4)$$

$$\Rightarrow |\vec{a} - \vec{b}| = \sqrt{13 - 8} = \sqrt{5}$$

Question 23. Evaluate $\int e^x (\cos x - \sin x) dx$.

Or

Evaluate $\int x e^x dx$.

Solution: Let $I = \int e^x (\cos x - \sin x) dx$

$$\Rightarrow I = \int e^x \{ \cos x + (-\sin x) \} dx$$

Let $f(x) = \cos x \Rightarrow f'(x) = -\sin x$

We know that $\int e^x \{ f(x) + f'(x) \} dx = e^x f(x) + C$

\therefore From Eq, (i), we get

$$I = e^x \cos x + C$$

Or

$$\text{Let } I = \int x e^x dx$$

$$I = x \int e^x dx - \int \left(\frac{d}{dx}(x) \cdot \int e^x dx \right) dx$$

[using integration by parts]

$$= x e^x - \int (1 \cdot e^x) dx$$

$$= x e^x - \int e^x dx$$

$$\Rightarrow I = x e^x - e^x + C$$

$$\Rightarrow I = e^x (x - 1) + C$$

Question 24. Let A and B be two events of the same sample space S of an experiment, then prove that $0 \leq P(A/B) \leq 1$, $B \neq \emptyset$.

Solution:

$$\text{By definition, } P\left(\frac{A}{B}\right) = \frac{P(A \cap B)}{P(B)} \quad \dots(i)$$

Also, $A \cap B \subset B$ $\therefore A \cap B$ is a subset of B

$$\Rightarrow P(A \cap B) \leq P(B)$$

$$\Rightarrow \frac{P(A \cap B)}{P(B)} \leq 1 \quad \dots(ii)$$

Again, $P(A \cap B) \geq 0$ and $B \neq \emptyset$

$$\therefore P(B) > 0$$

$$\therefore \frac{P(A \cap B)}{P(B)} \geq 0 \quad \dots(iii)$$

From Eqs. (ii) and (iii), we get

$$0 \leq \frac{P(A \cap B)}{P(B)} \leq 1$$

Hence, $0 \leq P(A/B) \leq 1$ [from Eq. (i)] **Hence proved.**

Question 25. Evaluate $\int_{-1}^1 |1-x| dx$.

Or

Evaluate $\int_0^3 [x] dx$, where [x] is the greatest integer function.

Solution:

$$\begin{aligned} \text{Let } I &= \int_{-1}^1 |1-x| dx = \int_{-1}^1 (1-x) dx \\ &\quad \left[\because |1-x| = \begin{cases} (1-x), & x < 1 \\ -(1-x), & x \geq 1 \end{cases} \right] \\ &= \left[x - \frac{x^2}{2} \right]_{-1}^1 \\ &= \left(1 - \frac{1}{2} \right) - \left(-1 - \frac{1}{2} \right) \\ &= \frac{1}{2} + \frac{3}{2} = 2 \end{aligned}$$

Or

$$\begin{aligned} \text{Let } I &= \int_0^3 [x] dx = \int_0^1 [x] dx + \int_1^2 [x] dx + \int_2^3 [x] dx \\ &= \int_0^1 0 dx + \int_1^2 1 dx + \int_2^3 2 dx = 0 + [x]_1^2 + 2[x]_2^3 \\ &= (2-1) + 2(3-2) = 1 + 2 = 3 \end{aligned}$$

Section C

This section comprises of short answer type questions (SA) of 3 marks each

Question 26. Determine f(0), so that the function f(x)

$$\text{defined by } f(x) = \frac{(4^x - 1)^3}{\sin \frac{x}{4} \log \left(1 + \frac{x^2}{3}\right)}$$

becomes continuous at x = 0.

Or

$$\text{If } y = b \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right), \text{ then find } \frac{dy}{dx}.$$

Solution: For f(x) to be continuous at x = 0, we must have

$$\lim_{x \rightarrow 0} f(x) = f(0)$$

$$\begin{aligned}
 \Rightarrow f(0) &= \lim_{x \rightarrow 0} f(x) = \lim_{x \rightarrow 0} \frac{(4^x - 1)^3}{\sin \frac{x}{4} \log \left(1 + \frac{x^2}{3}\right)} \\
 &= \lim_{x \rightarrow 0} \frac{\left(\frac{4^x - 1}{x}\right)^3}{\left(\frac{\sin \frac{x}{4}}{\frac{x}{4}}\right) \left(\frac{\log \left(1 + \frac{x^2}{3}\right)}{\frac{x^2}{3} \times 3}\right)} \\
 &\left[\because \lim_{x \rightarrow 0} \left(\frac{a^x - 1}{x}\right) = \log_a a, \lim_{x \rightarrow 0} \left(\frac{\log(1+x)}{x}\right) = 1 \right. \\
 &\quad \left. \text{and } \lim_{x \rightarrow 0} \left(\frac{\sin x}{x}\right) = 1 \right] \\
 &= \frac{(\log_4 4)^3}{\frac{1}{4} \times \frac{1}{3}} = 12 (\log_4 4)^3
 \end{aligned}$$

Or

$$\text{Given, } y = b \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right)$$

$$\Rightarrow \frac{y}{b} = \tan^{-1} \left(\frac{x}{a} + \tan^{-1} \frac{y}{x} \right)$$

$$\Rightarrow \tan \frac{y}{b} = \frac{x}{a} + \tan^{-1} \frac{y}{x}$$

On differentiating both sides w.r.t. x , we get

$$\begin{aligned}
 \frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \frac{dy}{dx} &= \frac{1}{a} + \frac{1}{1 + \left(\frac{y}{x} \right)^2} \times \frac{x \frac{dy}{dx} - y}{x^2} \\
 \Rightarrow \frac{1}{b} \sec^2 \left(\frac{y}{b} \right) \frac{dy}{dx} &= \frac{1}{a} + \frac{x \frac{dy}{dx} - y}{x^2 + y^2} \\
 \Rightarrow \frac{dy}{dx} \left[\frac{1}{b} \sec^2 \left(\frac{y}{b} \right) - \frac{x}{x^2 + y^2} \right] &= \frac{1}{a} - \frac{y}{x^2 + y^2} \\
 \therefore \frac{dy}{dx} &= \frac{\frac{1}{a} - \frac{y}{x^2 + y^2}}{\frac{1}{b} \sec^2 \left(\frac{y}{b} \right) - \frac{x}{x^2 + y^2}}
 \end{aligned}$$

Question 27. Show that the relation S in set

$A = \{x \in \mathbb{Z} : 0 \leq x \leq 12\}$ given by

$S = \{(a, b) : a, b \in A, |a - b| \text{ is divisible by 4}\}$

is an equivalence relation. Find the set of all elements related to 1.

Solution: Given relation is

$S = \{(a, b) : |a - b| \text{ is divisible by 4 and } a, b \in A\}$ and $A = \{x : x \in \mathbb{Z} \text{ and } 0 < x < 12\}$

Now, A can be written as

$A = \{0, 1, 2, 3, 12\}$

Reflexive As for any $x \in A$, we get

$|x - x| = 0$, which is divisible by 4.

$\Rightarrow (x, x) \in S, \forall x \in A$

Therefore, S is reflexive.

Symmetric As for any $(x, y) \in S$, we get $|x - y|$ is divisible by 4. [by using definition of given relation]

$\Rightarrow |x - y| = 4\lambda, \text{ for some } \lambda \in \mathbb{Z}$

$\Rightarrow |y - x| = 4\lambda, \text{ for some } \lambda \in \mathbb{Z}$

$\Rightarrow (y, x) \in S$

Thus, $(x, y) \in S$

$\Rightarrow (y, x) \in S, \forall x, y \in A$

Therefore, S is symmetric.

Transitive For any $(x, y) \in S$ and $(y, z) \in S$, we get $|x - y|$ is divisible by 4 and $|y - z|$ is divisible by 4.

[by using definition of given relation]

$\Rightarrow |x - y| = 4\lambda \text{ and } |y - z| = 4\mu, \text{ for some } \lambda, \mu \in \mathbb{Z}$

Now, $x - z = (x - y) + (y - z)$

$= \pm 4\lambda \pm 4\mu = \pm 4(\lambda + \mu)$

$\Rightarrow |x - z|$ is divisible by 4.

$\Rightarrow (x, z) \in S$

Thus, $(x, y) \in S$ and $(y, z) \in S$

$\Rightarrow (x, z) \in S, \forall x, y, z \in A$

Therefore, S is transitive.

Since, S is reflexive, symmetric and transitive, so it is an equivalence relation.

Now, set of all elements related to 1 is $\{1, 5, 9\}$.

Question 28. Evaluate $\int \tan(x - \theta) \tan(x + \theta) \tan 2x dx$.

Or

Evaluate $\int \sin x - x \cos x / x(x + \sin x) dx$

Solution We know that

$$\begin{aligned}
 2x &= (x - \theta) + (x + \theta) \\
 \Rightarrow \tan 2x &= \tan \{(x - \theta) + (x + \theta)\} \\
 \Rightarrow \tan 2x &= \frac{\tan(x - \theta) + \tan(x + \theta)}{1 - \tan(x - \theta) \tan(x + \theta)} \\
 \Rightarrow \tan 2x - \tan(x - \theta) \tan(x + \theta) \tan 2x &= \tan(x - \theta) + \tan(x + \theta) \\
 \Rightarrow \tan(x - \theta) \tan(x + \theta) \tan 2x &= \tan 2x - \tan(x - \theta) - \tan(x + \theta)
 \end{aligned}$$

$$\begin{aligned}
 \text{Let } I &= \int \tan(x - \theta) \tan(x + \theta) \tan 2x \, dx \\
 &= \int (\tan 2x - \tan(x - \theta) - \tan(x + \theta)) \, dx \\
 \Rightarrow I &= -\frac{1}{2} \log |\cos 2x| + \log |\cos(x - \theta)| \\
 &\quad + \log |\cos(x + \theta)| + C
 \end{aligned}$$

Or

$$\begin{aligned}
 \text{Let } I &= \int \frac{\sin x - x \cos x}{x(x + \sin x)} \, dx \\
 &= \int \frac{(x + \sin x) - x - x \cos x}{x(x + \sin x)} \, dx \\
 &= \int \left[\frac{x + \sin x}{x(x + \sin x)} - \frac{x(1 + \cos x)}{x(x + \sin x)} \right] \, dx \\
 &= \int \frac{1}{x} \, dx - \int \frac{1 + \cos x}{x + \sin x} \, dx \\
 &= \log |x| - \log |x + \sin x| + C \\
 &= \log \left| \frac{x}{x + \sin x} \right| + C
 \end{aligned}$$

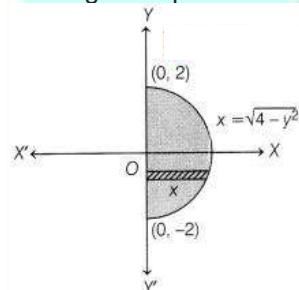
Question 29. Sketch the region $\{(x, y) : x = \sqrt{4-y^2}\}$ and F-axis. Find the area of the region using integration.

Solution: Given region is $\{(x, y) : x = \sqrt{4-y^2}\}$ and Y-axis.

We have, $x = \sqrt{4-y^2} \Rightarrow x^2 = 4 - y^2 \Rightarrow x^2 + y^2 = 4$

This represents the equation of circle having centre $(0, 0)$ and radius 2.

But original equation is $x = \sqrt{4-y^2}$, so x is positive. It means that we have to take a curve to the right side of the Y-axis.



Thus, only semi-circle is formed to the right side of the Y-axis.

Since, the region is symmetrical about X-axis.

∴ Area of shaded region,

$$\begin{aligned}
 A &= 2 \int_0^2 x \, dy = 2 \int_0^2 \sqrt{4 - y^2} \, dy \\
 &= 2 \int_0^2 \sqrt{2^2 - y^2} \, dy \\
 &= 2 \left[\frac{y}{2} \sqrt{2^2 - y^2} + \frac{2^2}{2} \sin^{-1} \frac{y}{2} \right]_0^2 \\
 &= 2 \left[\frac{2}{2} \cdot 0 + 2 \cdot \frac{\pi}{2} - \frac{0}{2} \cdot 2 - 2 \sin^{-1} 0 \right] \\
 &= 2 \left[2 \cdot \frac{\pi}{2} \right] = 2\pi \text{ sq units}
 \end{aligned}$$

Question 30. Find the intervals in which the function $f(x) = 20 - 9x + 6x^2 - x^3$ is

- (i) strictly increasing.
- (ii) strictly decreasing.

Solution: Given function is $f(x) = 20 - 9x + 6x^2 - x^3$.

On differentiating both sides w.r.t. x, we get

$$f'(x) = -9 + 12x - 3x^2$$

On putting $f'(x) = 0$, we get

$$-9 + 12x - 3x^2 = 0$$

$$\Rightarrow -3(x^2 - 4x + 3) = 0$$

$$\Rightarrow -3(x - 1)(x - 3) = 0$$

$$\Rightarrow (x - 1)(x - 3) = 0$$

$$\Rightarrow x - 1 = 0 \text{ or } x - 3 = 0$$

$$\Rightarrow x = 1 \text{ or } 3$$

Now, we find intervals in which $f(x)$ is strictly increasing or strictly decreasing.

Interval	$f'(x) = -3(x-1)(x-3)$	Sign of $f'(x)$
$x < 1$	$(-)(-)(-)$	- ve
$1 < x < 3$	$(-)(+)(-)$	+ ve
$x > 3$	$(-)(+)(+)$	- ve

We know that a function $f(x)$ is said to be strictly increasing when $f'(x) > 0$ and it is said to be strictly decreasing, if $f'(x) < 0$. So, the given function $f(x)$ is

- (i) strictly increasing on the interval $(1, 3)$.
- (ii) strictly decreasing on the intervals $(-\infty, 1)$ and $(3, \infty)$.

Question 31. Three cards are drawn successively without replacement from a pack of 52 well-shuffled cards. What is the probability that first two cards are king and the third card drawn is an ace?

Or

A and B are independent events. The probability that both A and B occur is $1/8$ and the probability that neither occurs is $3/8$. Find $P(A)$ and $P(B)$.

Solution: There are 52 cards in a pack.

$$\therefore n(S) = 52$$

Let A = Event that the card drawn is king

and B = Event that the card drawn is an ace.

$$\text{Now, } P(A) = 4/52$$

$P(A/A)$ = Probability of drawing second king when one king has already been drawn

$$= 3/51 [\because \text{remaining cards are } (52 - 1) = 51]$$

$P(B/AA)$ = Probability of drawing third card to be an A ace when two kings have already been drawn

$$4/50$$

Now, probability of getting first two cards are king and third card is an ace = $P(A \cap A \cap B)$

$$= P(A) \cdot P\left(\frac{A}{A}\right) \cdot P\left(\frac{B}{AA}\right) \quad [\text{by multiplication theorem}]$$

$$= \frac{4}{52} \times \frac{3}{51} \times \frac{4}{50} = \frac{2}{5525}$$

Or

Let $P(A) = x$ and $P(B) = y$

$$\text{Given, } P(A \cap B) = \frac{1}{8} \text{ and } P(\bar{A} \cap \bar{B}) = \frac{3}{8}$$

Since, A and B are independent event.

$$P(A \cap B) = \frac{1}{8} \Rightarrow P(A)P(B) = \frac{1}{8} \Rightarrow xy = \frac{1}{8} \quad \dots (i)$$

$$P(\bar{A} \cap \bar{B}) = \frac{3}{8} \Rightarrow P(\bar{A} \cup \bar{B}) = \frac{3}{8}$$

$$\Rightarrow 1 - P(A \cup B) = \frac{3}{8} \Rightarrow P(A \cup B) = 1 - \frac{3}{8} = \frac{5}{8}$$

$$\Rightarrow P(A) + P(B) - P(A \cap B) = \frac{5}{8} \Rightarrow x + y - \frac{1}{8} = \frac{5}{8}$$

$$\Rightarrow x + y = \frac{3}{4} \quad \dots (ii)$$

On solving Eqs. (i) and (ii) simultaneously, we get

$$x = \frac{1}{2} \text{ and } y = \frac{1}{4} \text{ or } x = \frac{1}{4} \text{ and } y = \frac{1}{2}$$

$$\text{Thus, } P(A) = \frac{1}{2} \text{ and } P(B) = \frac{1}{4}$$

$$\text{or } P(A) = \frac{1}{4} \text{ and } P(B) = \frac{1}{2}$$

Section D

This section comprises of long answer type questions (LA) of 5 marks each

Question 32.

$$\text{Let } A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \text{ and } f(x) = x^2 - 4x + 7.$$

Show that $f(A) = O$. Use this result to find A^5 .

Or Determine the product of $\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$

and $\begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, then use to solve the

system of equations

$$x - y + z = 4, x - 2y - 2z = 9$$

$$\text{and } 2x + y + 3z = 1.$$

Solution: We have, $f(x) = x^2 - 4x + 7$

$$\therefore f(A) = A^2 - 4A + 7I_2$$

$$\text{Now, } A^2 = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 4-3 & 6+6 \\ -2-2 & -3+4 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix}$$

$$-4A = \begin{bmatrix} -8 & -12 \\ 4 & -8 \end{bmatrix} \text{ and } 7I_2 = \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$\therefore f(A) = A^2 - 4A + 7I_2$$

$$\Rightarrow f(A) = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} + \begin{bmatrix} -8 & -12 \\ 4 & -8 \end{bmatrix} + \begin{bmatrix} 7 & 0 \\ 0 & 7 \end{bmatrix}$$

$$\Rightarrow f(A) = \begin{bmatrix} 1-8+7 & 12-12+0 \\ -4+4+0 & 1-8+7 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$$

Hence proved

$$\text{Now, } f'(A) = 0$$

$$\Rightarrow A^2 = 4A + 7I_2 = 0 =$$

$$\Rightarrow A^2 = 4A - 7I_2$$

$$\Rightarrow A^3 = A^2 A = (4A - 7I_2)A = 4A^2 - 7I_2 A$$

$$\Rightarrow A^3 = 4(4A - 7I_2) - 7A \text{ [using } A^2 = 4A - 7I_2]$$

$$\Rightarrow A^3 = 9A - 28I_2$$

$$\Rightarrow A^4 = A^3 A = (9A - 28I_2)A$$

$$\Rightarrow A^4 = 9A^2 - 28A = 9(4A - 7I_2) - 28A \text{ [using } A^2 = 4A - 7I_2]$$

$$\Rightarrow A^4 = 36A - 63I_2 - 28A = 8A - 63I_2$$

$$\Rightarrow A^5 = A^4 A = (8A - 63I_2)A = 8A^2 - 63I_2 A$$

$$\Rightarrow A^5 = 8(4A - 7I_2) - 63A = -31A - 56I_2 \text{ [using } A^2 = 4A - 7I_2]$$

$$\Rightarrow A^5 = -31 \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} - 56 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} -62 & -93 \\ 31 & -62 \end{bmatrix} + \begin{bmatrix} -56 & 0 \\ 0 & -56 \end{bmatrix}$$

$$= \begin{bmatrix} -118 & -93 \\ 31 & -118 \end{bmatrix}$$

Or

$$\text{Let } B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \text{ and } A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$\text{Now, } BA = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} -4+4+8 & 4-8+4 & -4-8+12 \\ -7+1+6 & 7-2+3 & -7-2+9 \\ 5-3-2 & -5+6-1 & 5+6-3 \end{bmatrix}$$

$$= \begin{bmatrix} 8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8 \end{bmatrix} = 8 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 8I$$

$$\Rightarrow BA = 8I$$

$$\Rightarrow BA(A^{-1}) = 8I \cdot A^{-1}$$

[post-multiplying both sides by A^{-1}]

$$\Rightarrow B(AA^{-1}) = 8I \cdot A^{-1}$$

$$\Rightarrow B = 8A^{-1} \quad [\because AA^{-1} = I]$$

$$\therefore A^{-1} = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$$

Given equation can be written in matrix form as

$AX = B$

$$\text{where } A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}, X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow X = A^{-1}B$$

$$\text{Hence, } X = \frac{1}{8} \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix} \begin{bmatrix} 4 \\ 0 \\ 1 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} -16+36+4 \\ -28+9+3 \\ 20-27-1 \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 24 \\ -16 \\ -8 \end{bmatrix} = \begin{bmatrix} 3 \\ -2 \\ -1 \end{bmatrix}$$

On comparing corresponding elements, we get

$$x = 3, y = -2 \text{ and } z = -1$$

Question 33. Solve $dy/dx + 1/x = e^y / x$.

Or

Solve $xdy/dx + v - x + xy \cot x = 0$

Solution:

$$\text{We have, } \frac{dy}{dx} + \frac{1}{x} = \frac{e^y}{x} \Rightarrow \frac{dy}{dx} = \frac{e^y - 1}{x}$$

$$\Rightarrow \frac{dy}{e^y - 1} = \frac{dx}{x} \quad \dots(i)$$

On integrating both sides of Eq. (i), we get

$$\int \frac{dy}{e^y - 1} = \int \frac{dx}{x} \Rightarrow \int \frac{e^{-y} dy}{1 - e^{-y}} = \int \frac{dx}{x}$$

$$\Rightarrow \log(1 - e^{-y}) = \log x + \log C$$

$$\Rightarrow \log(1 - e^{-y}) = (\log Cx) \Rightarrow 1 - e^{-y} = Cx$$

$$\Rightarrow e^{-y} = 1 - Cx \Rightarrow -y = \log(1 - Cx)$$

$$\Rightarrow y + \log(1 - Cx) = 0$$

Or

$$xdy/dx + y(1 + x \cot x) = x \ dx$$

$$\Rightarrow dy/dx + y(1/x + \cot x) = 1 \dots(i)$$

The given differential equation is a linear differential equation of the form $dy/dx + Py = Q \dots(ii)$

On comparing Eqs. (i) and (ii), we get

$$P = \left(\frac{1}{x} + \cot x \right) \text{ and } Q = 1$$

$$\text{IF} = e^{\int P dx} = e^{\int \left(\frac{1}{x} + \cot x \right) dx} = e^{\log|x| + \log|\sin x|}$$

$$\Rightarrow \text{IF} = e^{\log|x \sin x|}$$

$$\Rightarrow \text{IF} = x \sin x$$

$$\text{Solution is } y \times \text{IF} = \int (Q \times \text{IF}) dx + C \quad \dots(iii)$$

On putting values of IF and 0 in Eq. (iii), we get

$$y \times x \sin x = \int 1 \times x \sin x dx + C$$

$$\Rightarrow xy \sin x = \int x \sin x dx + C$$

$$\Rightarrow xy \sin x = x \int \sin x dx - \int \left(\frac{d}{dx}(x) \cdot \int \sin x dx \right) dx + C$$

[using by parts]

$$\Rightarrow xy \sin x = -x \cos x - \int 1 \times \cos x dx + C$$

$$\Rightarrow xy \sin x = -x \cos x + \sin x + C$$

$$\Rightarrow y = \frac{-x \cos x + \sin x + C}{x \sin x}$$

$$\Rightarrow y = -\cot x + \frac{1}{x} + \frac{C}{x \sin x}$$

It is the required solution.

Question 34. Vertices B and C of AABC lie along the line $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z-0}{4}$. Find the area of the triangle given that A has coordinates (1, -1, 2) and line segment BC has length 5 units.

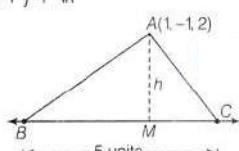
Solution: Let h be the height of $\triangle ABC$. Then, h is the length of perpendicular from A(1, -1, 2) to the line

$$\frac{x+2}{2} = \frac{y-1}{1} = \frac{z-0}{4}$$

Clearly, line $\frac{x+2}{2} = \frac{y-1}{1} = \frac{z-0}{4}$ passes through

the point say P (-2, 1, 0) and parallel to the vector

$$\vec{b} = 2\hat{i} + \hat{j} + 4\hat{k}$$



$$\text{Let } \frac{x+2}{2} = \frac{y-1}{1} = \frac{z-0}{4} = \lambda. \text{ Then, coordinates of } M$$

are $(2\lambda - 2, \lambda + 1, 4\lambda)$.

Now, DR's of AM are $2\lambda - 3, \lambda + 2$ and $4\lambda - 2$.

Since, $AM \perp BC$. therefore

$$2(2\lambda - 3) + 1(\lambda + 2) + 4(4\lambda - 2) = 0 \quad [\because \text{DR's of line BC are } 2, 1, 4]$$

$$\Rightarrow 21\lambda = 12 \Rightarrow \lambda = \frac{4}{7}$$

Thus, the coordinates of M are $\left(\frac{-6}{7}, \frac{11}{7}, \frac{16}{7}\right)$

Now, $h = |AM|$

$$\begin{aligned} &= \sqrt{\left(\frac{-6}{7} - 1\right)^2 + \left(\frac{11}{7} + 1\right)^2 + \left(\frac{16}{7} - 2\right)^2} \\ &= \sqrt{\frac{169}{7^2} + \frac{324}{7^2} + \frac{4}{7^2}} = \sqrt{\frac{497}{7^2}} = \sqrt{\frac{71}{7}} \end{aligned}$$

It is given that the length of BC is 5 units.

$$\begin{aligned} \therefore \text{Area of } \triangle ABC &= \frac{1}{2} (BC \times h) \\ &= \frac{1}{2} \times 5 \times \sqrt{\frac{71}{7}} \\ &= \sqrt{\frac{1775}{28}} \text{ sq units} \end{aligned}$$

Question 35. If $(\tan^{-1} x)^y + y^{\cot x} = 1$, then find dy/dx .

Solution: Let $u = (\tan^{-1} x)^y$ and $v = y^{\cot x}$

Then, given equation becomes $u + v = 1$

On differentiating both sides w.r.t. x , we get

$$\frac{du}{dx} + \frac{dv}{dx} = 0 \quad \dots(i)$$

Now, $u = (\tan^{-1} x)^y$

On taking log both sides, we get

$$\log u = y \log(\tan^{-1} x)$$

On differentiating both sides w.r.t. x , we get

$$\frac{1}{u} \frac{du}{dx} = \frac{d}{dx} [y \cdot \log(\tan^{-1} x) + y \frac{d}{dx} (\log \tan^{-1} x)]$$

[by using product rule of derivative]

$$\Rightarrow \frac{1}{u} \frac{du}{dx} = \frac{dy}{dx} \log(\tan^{-1} x) + \frac{y}{(\tan^{-1} x)(1+x^2)}$$

$$\Rightarrow \frac{du}{dx} = (\tan^{-1} x)^y \left[\frac{dy}{dx} \log(\tan^{-1} x) + \frac{y}{(\tan^{-1} x)(1+x^2)} \right] \dots(ii)$$

Also, $v = y^{\cot x}$

On taking log both sides, we get $\log v = \cot x \log y$

On differentiating both sides w.r.t. x , we get

$$\frac{1}{v} \frac{dv}{dx} = \frac{d}{dx} (\cot x \cdot \log y + \cot x \frac{dy}{dx} (\log y))$$

[by using product rule of derivative]

$$\Rightarrow \frac{1}{v} \frac{dv}{dx} = -\cosec^2 x \log y + \frac{\cot x}{y} \frac{dy}{dx}$$

$$\Rightarrow \frac{dv}{dx} = y^{\cot x} \left[-\cosec^2 x \log y + \frac{\cot x}{y} \frac{dy}{dx} \right] \dots(iii)$$

On putting the values from Eqs. (ii) and (iii) in Eq. (i), we get

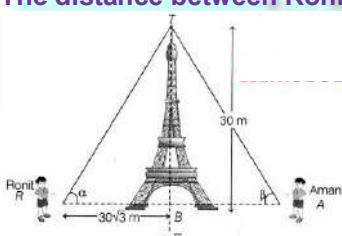
$$\begin{aligned} &(\tan^{-1} x)^y \left[\frac{dy}{dx} \log(\tan^{-1} x) + \frac{y}{(\tan^{-1} x)(1+x^2)} \right] \\ &+ y^{\cot x} \left[-\cosec^2 x \log y + \frac{\cot x}{y} \frac{dy}{dx} \right] = 0 \\ \Rightarrow & \frac{dy}{dx} \left[(\tan^{-1} x)^y \log(\tan^{-1} x) + \cot x \cdot y^{\cot x-1} \right] \\ &= - \left[\frac{y}{1+x^2} (\tan^{-1} x)^{y-1} - y^{\cot x} \cosec^2 x \log y \right] \\ &- \left[\frac{y}{1+x^2} (\tan^{-1} x)^{y-1} - y^{\cot x} \cosec^2 x \log y \right] \\ \Rightarrow & \frac{dy}{dx} = \frac{-y^{\cot x} \cosec^2 x \log y}{[(\tan^{-1} x)^y \log(\tan^{-1} x) + \cot x \cdot y^{\cot x-1}]} \end{aligned}$$

Section E

This section comprises of 3 case-study/passage-based questions of 4 marks each

Question 36. Ronit and Aman, two friends are standing on either side of a tower of 30 m high. They observe its top at the angle of elevation α and β respectively, (as shown in the figure below).

The distance between Ronit and Aman is $40\sqrt{3}$ m and distance between Ronit and tower is $30\sqrt{3}$ m.



Based on the above information, answer the following questions.

- Find $\sin \alpha$.
- Find $\angle TAR$.
- If $\alpha = \cos^{-1}(k_1/k_2)$, then find $k_1 + k_2$.

Find $\angle ATR$.Solution: (i) In $\triangle RTB$,

$$RB = 30\sqrt{3} \text{ and } TB = 30$$

$$\therefore RT^2 = RB^2 + TB^2 = (30\sqrt{3})^2 + (30)^2$$

$$\therefore RT = 60 \text{ m}$$

$$\Rightarrow \sin \alpha = \frac{TB}{RT} = \frac{30}{60} = \frac{1}{2}$$

(ii) In $\triangle TAB$,

$$\tan \beta = \frac{TB}{AB}$$

$$\Rightarrow \tan \beta = \frac{30}{10\sqrt{3}}$$

$$[\because AB = 40\sqrt{3} - 30\sqrt{3} = 10\sqrt{3}]$$

$$\Rightarrow \beta = \tan^{-1}(\sqrt{3})$$

$$\Rightarrow \beta = 60^\circ$$

(iii) From part (i), $RT = 60$

$$\Rightarrow \cos \alpha = \frac{RB}{RT} = \frac{30\sqrt{3}}{60} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow \alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right)$$

$$\Rightarrow k_1 + k_2 = \sqrt{3} + 2$$

Or

$$\text{In } \triangle ART, \alpha = \cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \frac{\pi}{6}$$

$$\beta = \tan^{-1}(\sqrt{3}) = \frac{\pi}{3}$$

We know, sum of all three interior angles of a triangle is π .

$$\therefore \alpha + \beta + \angle ATR = \pi$$

$$\Rightarrow \frac{\pi}{6} + \frac{\pi}{3} + \angle ATR = \pi$$

$$\Rightarrow \angle ATR = \pi - \frac{\pi}{2} = \frac{\pi}{2}$$

Question 37. Suppose a dealer in rural area wishes to purchase a number of sewing machines. He has some money to invest and has space for few items for storage. Let x denotes the number of electronic sewing machines and y denotes the number of manually operated sewing machines purchased by the dealer.

For the same, constraint related to investment is given by $3x + 2y \leq 48$ and objective function is $Z = 22x + 18y$ and other constraints consists the following $x + y \leq 20$, $x, y \geq 0$.

Based on the above information, answer the following questions.

(i) Find $Z_{(3, 4)}$.(ii) Evaluate $Z_{(1/2, 1/3)}$.

(iii) Find the number of corner points of the feasible region.

Or

Find $Z_{(\max)}$.

Solution:

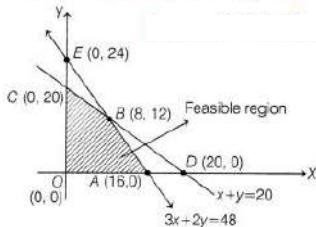
$$(i) Z_{(3, 4)} = (22 \times 3) + (18 \times 4) = 138$$

$$(ii) Z_{\left(\frac{1}{2}, \frac{1}{3}\right)} = \left(22 \times \frac{1}{2}\right) + \left(18 \times \frac{1}{3}\right) = 11 + 6 = 17$$

(ii) Objective function, $Z = 22x + 18y$

Subject to constraints

$$x + y \leq 20, 3x + 2y \leq 48, x, y \geq 0$$

 \therefore Number of corner points are 4.

The coordinates of the corner points A, B, C and 0 are (16, 0), (8, 12), (0, 20) and (0, 0), respectively.

Corner points	$Z = 22x + 18y$
(0, 0)	0 (Minimum)
(16, 0)	352
(8, 12)	392 (Maximum)
(0, 20)	360

Z is maximum at the point (8, 12).

∴ To get maximum profit 8 electronic sewing machines and 12 manually operated sewing machines should be purchased by the dealer. Hence,

Hence $Z_{(\text{max})} = 392$

Question 38. If $f(x)$ is a continuous function defined on $[0, a]$, then $\int_a^0 f(x) dx = \int_0^a f(a-x) dx$.

On the basis of above information, answer the following questions.

(i) If $f(x) = \frac{\sin x - \cos x}{1 + \sin x \cos x}$, then evaluate $\int_0^{\pi/2} f(x) dx$.

(ii) If $g(x) = \log(1 + \tan x)$, then evaluate $\int_0^{\pi/4} g(x) dx$.

Solution:

$$\begin{aligned}
 \text{(i) Let } I &= \int_0^{\pi/2} f(x) dx \\
 \Rightarrow I &= \int_0^{\pi/2} \frac{\sin x - \cos x}{1 + \sin x \cos x} dx \quad \dots \text{(i)} \\
 \Rightarrow I &= \int_0^{\pi/2} \frac{\sin\left(\frac{\pi}{2} - x\right) - \cos\left(\frac{\pi}{2} - x\right)}{1 + \sin\left(\frac{\pi}{2} - x\right) \cos\left(\frac{\pi}{2} - x\right)} dx \\
 \Rightarrow I &= \int_0^{\pi/2} \frac{\cos x - \sin x}{1 + \sin x \cos x} dx \quad \dots \text{(ii)}
 \end{aligned}$$

On adding Eqs. (i) and (ii), we get

$$\begin{aligned}
 2I &= \int_0^{\pi/2} \frac{\sin x - \cos x + \cos x - \sin x}{1 + \sin x \cos x} dx \\
 \Rightarrow 2I &= 0 \\
 \Rightarrow I &= 0
 \end{aligned}$$

(ii) We have, $g(x) = \log(1 + \tan x)$

$$\begin{aligned}
 \therefore g\left(\frac{\pi}{4} - x\right) &= \log \left[1 + \tan\left(\frac{\pi}{4} - x\right) \right] \\
 &= \log \left[1 + \frac{\tan \frac{\pi}{4} - \tan x}{1 + \tan \frac{\pi}{4} \tan x} \right] \\
 &= \log \left[1 + \frac{1 - \tan x}{1 + \tan x} \right] \\
 &= \log \left[\frac{2}{1 + \tan x} \right] \\
 &= \log 2 - \log(1 + \tan x) \\
 &= \log 2 - g(x) \\
 \therefore \int_0^{\pi/4} g\left(\frac{\pi}{4} - x\right) dx &= \int_0^{\pi/4} \log 2 dx - \int_0^{\pi/4} g(x) dx \\
 \Rightarrow \int_0^{\pi/4} g(x) dx &= \log 2 \left(\frac{\pi}{4} - 0\right) - \int_0^{\pi/4} g(x) dx \\
 \Rightarrow 2 \int_0^{\pi/4} g(x) dx &= \frac{\pi}{4} \log 2 \\
 \Rightarrow \int_0^{\pi/4} g(x) dx &= \frac{\pi}{8} \log 2
 \end{aligned} \tag{1}$$